Matt Bristow

Consultant to the Wind Energy

Website: www.mattbristow.com

Email: website@mattbristow.com

Civil, Structural, Geotechnical, Offshore, and Wind Engineering Optimisation of structures for offshore wind farms

Matt Bristow CEng, MIStructE

List of Technical Abilities Design of Foundations and Superstructures for Offshore Wind Turbines/Wind Energy Converters

Date: 7th April 2014

• General

- This list of Technical Abilities contains general information on the technical knowledge relating to the design of a typical monopile foundation for the support of an offshore wind turbine
- Aspects covered vary from initial site evaluation and determination of metocean parameters to full structural and fatigue analyses and member sizing

Detailed design and design criteria

- o Summary of detailed design
 - Input data determination of water depths, metocean parameters, turbine operating characteristics, etc.
 - Loadings separate and combined wind and wave loading
 - Structural analyses extreme and fatigue loadings
 - Dynamic response to both turbine loads and wave loads
 - Fatigue critical combination of wind and wave loading
 - Member checks and sizing
 - Optimisation of design economy and ease of installation

Design criteria

- Safety design for fatigue usually critical
- Elegance simple structures with minimal risk during installation and minimum number of operations on site
- Economy design fully optimised for minimal cost

o Other important criteria

- Response of structure to turbine operating characteristics soft-soft or soft-stiff designs
- Fine tuning of design to achieve optimum modal characteristics
- Lifting and transportation limitations position of grouted joint and use of optimum diameter/plate thickness
- Foundation installation method site constraints

• Determination of metocean data

- o Determination of water levels
 - Relationship between MSL (CD) and MSL (OD)
 - Tidal ranges and storm surge, e.g., LAT, HAT, and HSWL
 - Crest level of waves, including breaking waves
 - Extent of splash zone
 - Design water depths for 50 year life
- O Determination of platform level and hub height
 - Minimum platform level to suit clearance over waves
 - Minimum hub height to suit blade clearance over platform
 - Minimum hub height to suit blade clearance over vessels
- Determination of wave parameters
 - Extreme wave height and period (50 year return period), including the effects of shallow water and seabed slope, e.g., spilling or plunging breaking waves
 - Extreme currents (50 year return period)
 - Fatigue waves and wave scatter diagram, generated either from published data, site data, or European Wave Model and including selection of wave theory
- o Determination of wind parameters and other parameters
 - Extreme gust wind speed at hub height (50 year return period)
 - Variation of wind speed with height
 - Variation of turbulence intensity with height
 - Marine growth
 - Ice loading
 - Air and sea temperatures

• Dynamic behaviour and response

- Natural frequency and avoidance of resonance
 - Soft-soft or soft-stiff designs
 - Calculation of upper and lower bounds of natural frequency (1st and 2nd modes) and establishment of forbidden zones
 - Effect of non-linear ground conditions (p-y springs etc.)
 - Effect of added mass marine growth, entrapped water, and entrained water
 - Effect of lateral pile loading (thrust loading)

Dynamic response

- Dynamic analyses performed for either extreme or fatigue loadings
- Incorporation of non-linear waves for both extreme and fatigue loadings and non-linear ground supports for extreme loadings
- Effect of aerodynamic and hydrodynamic damping, wind turbine availability, and wind and wave directionality
- Wind loading incorporation of rotor loads, including time histories, from wind turbine manufacturer
- Wave loading steady state or transient time history analyses including generation of time histories
- Combined wind and wave loading simple superposition of loads to full combination of time histories

Structural analysis - extreme loading

- Extreme wave loading
 - Generation of wave loading, including non-linear waves up to stream function 10th order
 - Incorporation of marine growth (increased diameter), non-linear supports (p-y springs etc.), effects of currents, and variation with water depth
 - Calculation of C_d and C_m including the effects of wake encounter at low Keulegan-Carpenter numbers (i.e., large diameters)
 - Inclusion of J-tubes or other significant appurtenances
 - Calculation of forces due to static response (stepped wave) or dynamic response (steady state or transient time history analysis)
 - Generation of water particle kinematics
 - Member checking (local and overall buckling) including appurtenances

Extreme wind loading

- Incorporation of turbine loadings provided by wind turbine manufacture, e.g., from certification loading document
- Wind loading from turbine tower and/or superstructure provided by wind turbine manufacturer or calculated directly
- Member checking

Structural analysis - fatigue loading

- Fatigue wave loading
 - Generation of individual wave height and periods from wave scatter diagrams
 - Effect of non-linear waves
 - Use of linear spring supports (rather than clamp) to give exact match of 1st and 2nd modes
 - Inclusion of J-tubes or other significant appurtenances
 - Calculation of C_d and C_m including the effects of wake encounter at low Keulegan-Carpenter numbers (i.e., small waves)
 - Calculation of fatigue spectrum using static response (stepped wave) or dynamic response (steady state analysis)
 - Fatigue life assessment calculated using the following wave energy spectrums: deterministic, Pierson-Moskowitz, or Jonswap
- o Fatigue wind loading
 - Incorporation of fatigue spectrums or damage equivalent loadings provided by wind turbine manufacture, e.g., from certification loading document
 - Fatigue life assessment calculated at all critical points

Combination of wind and wave loading

- o Combined extreme wind and wave loading
 - Incorporation of combined turbine loadings and wave loadings provided by wind turbine manufacture, e.g., from certification loading document
 - Extreme wave combined with reduced wind, and vice versa
 - Otherwise, separate time history generated for wave loading and combined with time history for turbine loads provided by wind turbine manufacturer in order to give overall response
 - Member checking
- Combined fatigue wind and wave loading
 - Incorporation of combined wind and wave fatigue spectrums or damage equivalent loadings provided by wind turbine manufacture, e.g., from certification loading document
 - Alternatively, separate time history generated for wave loading and combined with time history for turbine loads provided by wind turbine manufacturer in order to give overall response
 - Determination of length of time history simulations and correlation of wind speed and wave height
 - Method of combining time histories, e.g., response spectra method for in-phase and out-of-phase random vibrations
 - Rainflow counting performed on combined time history to give combined wind and wave fatigue spectrum
 - Fatigue life assessment calculated at all critical points

• Value engineering

- Overall optimisation
 - Overall aim is to achieve minimum fabrication costs within constraints imposed by design and installation
 - Optimisation of design to suit turbine location and water depth
 - Fine tuning of design to achieve optimum modal characteristics and therefore minimise dynamic response
 - Use of optimum D/t ratios for monopile (to suit pile driveability) and transition piece/turbine tower (for minimum fabrication cost)
 - Variation of embedment length with turbine location and ground conditions
 - Fatigue critical avoid poor details with SCF's, e.g., metal-to-metal contact within grouted joint
 - Fatigue critical avoid poor details around areas of peak/high stress, e.g., position of appurtenances at top and bottom of grouted joint and at mudline
 - Consider reducing corrosion protection on areas of good fatigue life and vice versa
- Fabrication costs and materials
 - Limit plate thickness to 60mm (consider using larger diameter)
 - Relatively easy availability
 - Seam welds not excessive
 - Pre-heat not required
 - Cheaper J2G3 steel can be used instead of offshore grades
 - Optimise length of items to suit maximum plate rolling widths
 - Fabrication details detail of attachments to main shell to be chosen to maintain optimum plate thickness, and not vice versa

• Scour protection and overall seabed movement

- Assistance with assessment of seabed levels due to
 - Local scour
 - Sand waves
 - Overall seabed movement long term (tidal & littoral processes)
 - Overall seabed movement short term (storm action)
- Scour protection strategy and design considerations
 - Cost benefit analysis long term design life (no repairs) versus medium term design life with periodic repairs
 - Assistance with preparation of requirements for physical or numerical modelling
 - Installation sequence of scour protection and effect of temporary scour during pile installation
 - Effect of presence of scour protection on breaking wave type
 - Determination of design water depths
 - Specification for scour protection layout and materials

• Foundation installation

- Selection of pile installation method
 - Drive
 - Drill and drive
 - Drill and socket
- Design considerations
 - Assistance with interpretation of ground conditions and recommendations for site investigations
 - Risks and options associated with hard driving conditions
 - Optimisation of installation method to suit site conditions and equipment available to Contractor
- Determination of embedment length
 - Optimisation across site to suit turbine location and water depth
 - Extreme conditions safety requirements
 - Operating conditions modal and deflection criteria
- Detailed design
 - Derivation of p-y, t-z, and q-w soil springs
 - Pile driveability analysis
 - Pile tip integrity and permitted D/t ratio
 - Fatigue damage during driving

• Design of grouted joint and appurtenances

- Design of grouted joint
 - Preliminary assessment of peak hoop stresses and axial stresses using empirical formulae
 - Detailed assessment of grouted joint using 3D solid element finite element analysis
 - Determination of position and minimum length of grouted joint to suit design loadings and preferred methods of installation
 - Prevention of slip, debonded design, with inclusion of shear keys
 - Provision of mechanical safety
 - Selection of grout material
- Detailing of grouted joint
 - Determination of thickness of grout to suit installation method and misalignment tolerances
 - Optimisation of design, including avoidance of poor fatigue details associated with areas of peak stresses and SCF's associated with metal-to-metal contacts (e.g. angle stop rings)
 - Methods of installation, including temporary support of transition piece and detailing of grout skirts, etc.
- Appurtenances
 - J-tubes, including provision for installation and transportation
 - Boat landings; rigid or with fenders
 - Main platform, secondary platforms, and internal platforms, including attachments and mounting points
 - Landing points for installation of transition piece and lifting eyes

Corrosion protection

- o Determination of corrosion allowance for following zones
 - Internal and external buried
 - Internal and external submerged
 - Internal airspace within monopile and within tower
 - External splash zone and external atmospheric
- Specification for corrosion protection
 - Recommendations for coating selection including J-tubes and other appurtenances
 - Recommendations for cathodic protection including direct mounting or remote systems
- Optimisation of overall design for cost
 - Consider reducing corrosion protection in lieu of increased corrosion allowance and corrosion pitting on areas of good fatigue life and vice versa
 - Cost benefits of increased plate thickness versus reduced corrosion protection, and vice versa

• Weld specifications and fabrication details

- Weld specifications
 - Design of welded connections
 - Plate profile and weld details
 - Weld quality and permissible imperfections
 - Optimisation of weld spec with requirements for fatigue design
- Fabrication details and specifications
 - Preparation of fabrication details
 - Permissible fabrication tolerances
 - Optimisation of fabrication spec with requirements for design

• Certification of designs

- o Certification of designs to following international certification bodies
 - Germanischer Lloyd WindEnergie GmbH (GL Wind)
 - Det Norske Veritas (DNV)
 - American Bureau of Shipping (ABS)

• Calculations to various international codes of practice:-

- o Calculation of fatigue damage to any of the following codes of practice
 - Eurocode 3 1993-1.1 and 1993-3.1
 - British Standard BS 7608
 - Germanischer Lloyd Regs
 - API RP 2A-WSD
 - UK HSE Guidelines
 - International Standard ISO 19902
 - NORSOK Standard N-004
 - ESDU Data Items
 - Dansk Standard DS 449
- Calculation of thin walled buckling of steel shells to following codes of practice
 - ECCS European Recommendations
 - Eurocode 3 1993-1.6 and 1993-3.1
 - API RP 2A-WSD
 - NORSOK Standard N-004