Matt Bristow

Consultant to the Wind Energy

Website: www.mattbristow.com
Email: website@mattbristow.com

Civil, Structural, Geotechnical, Offshore, and Wind Engineering Optimisation of structures for offshore wind farms

Matt Bristow CEng, MIStructE

How I Can Help Design of Foundations and Superstructures for Offshore Wind Turbines/Wind Energy Converters

Date: 7th April 2014

• My Role as a Sub-Consultant

- o I have extensive experience in the design of foundations and superstructures for offshore wind turbines and other related structures
 - Many types of structure, e.g., monopile or gravity foundations
 - Complete structure from tower top to embedment/bearing
 - Expertise in both structural engineering and geotechnical engineering
- My role working on behalf of the Owner/Due Diligence/Classification Societies
 - Structural review of designs carried out by others
 - Technical expertise and opinions
 - Independent assessments or recommendations
 - Development of design and analysis methodologies
 - Preparation of reports
- My role working on behalf of the lead Consultant/Developer/Contractor
 - Independent structural assessments and/or checking
 - Additional highly experienced member of the team
 - Preliminary assessments or feasibility studies
 - Detailed design including geotechnical
 - Preparation of reports and certification

• Preliminary assessments

- o Investigation into the requirements for the foundations
 - Appraisal of site conditions
 - Water depths and levels
 - Metocean parameters
 - Ground conditions
 - Appraisal of wind turbine characteristics, etc.
 - Hub height and levels of interfaces
 - Natural frequency and avoidance of resonance
 - Selection of soft-soft or soft-stiff design
 - Turbine loads extreme and fatigue loads
- Assessment of the relative merits of different types of foundations
 - Monopile foundations
 - Tri-pod or quad-pod foundations
 - Gravity foundations
 - Other types, e.g., guyed monopile
- o Identification of preferred foundation solution for the site
 - Foundation type
 - Determination of heights, levels, and location of interfaces
 - Size and weights of components
 - Method of installation and construction sequence
 - Method of connecting tower to foundation
 - Identification of critical areas and potential areas for optimisation
- o Identification of the construction challenges for the preferred foundation type
 - Transportation and lifting limitations
 - Consequences of variations in ground conditions
 - Vulnerability of installation to adverse site conditions
 - Risk assessments and minimising risk
 - Integration with scour protection requirements

Feasibility studies

- o Determination of environmental design input parameters
 - Selection of range of water depths to be considered
 - Identification of most critical input parameters
 - Determination of metocean data
 - Assessment of ground conditions
- Determination of wind turbine characteristics
 - Determination of hub heights and tower bottom levels
 - Choice of a range of turbine size, from 2MW to 8MW or more
 - Assessment of dynamic interaction of turbine characteristics with structural response of the structure
 - Choice of soft-soft or soft-stiff designs as applicable
- o Estimation of wind turbine characteristics (in absence of manufacturer's data)
 - Turbine rotor and blade passing frequency, etc.
 - Turbine tower dimensions and plate thicknesses
 - Turbine tower top or bottom loads extreme and fatigue loads
 - Estimation of data for multi-megawatt machines of the future
- o Results of feasibility studies and sensitivity analyses
 - Estimation of foundation sizes and weights of components
 - Variation of foundation size with turbine rating
 - Variation of foundation size with water depth constant diameter
 - Variation with water depth constant wall thickness
 - Effect of different ground conditions
 - Effect of different hub heights
 - Effect of soft-soft or soft-stiff designs where applicable
 - Prediction of optimum wind turbine/water depth combinations
- o Investigation into methods of connecting tower to foundation
 - Grouted joint, bolted flange, and site welding
 - Tilting correction rings or stub sections
 - Grouted flange, etc.

Detailed design

- Experience with all aspects of detailed design from project inception to installation on site
 - Help with turbine selection
 - Determination of turbine locations and layout, including location of substation platform and cable layouts
 - Assessment of scour and overall seabed movement
 - Determination of design water depths and turbine levels
 - Selection of foundation type, e.g., monopile or tri-pod, etc.
 - Derivation of all metocean data, including wind parameters and size and type of breaking waves
 - Assessment of ground conditions
 - Identifying best method of connecting tower to foundation
 - Selection of most appropriate method of foundation installation

o Structural analyses

- Assessment of turbine loadings and characteristics
- Determination of optimum natural frequency requirements of the foundation versus those of the turbine itself
- Selection of soft-soft or soft-stiff designs
- Dynamic or static analyses performed for either extreme or fatigue loadings, including steady state or time history analyses
- Dynamic analyses carried out for both wind and wave loading
- Incorporation of non-linear effects due to waves (shallow water effects) and ground support (use of p-y springs, etc.)
- Development of methods to combine wind and wave fatigue loadings using generation and combination of time histories
- Member checking and pile driveability analyses carried out
- Fatigue damage calculations undertaken for separate wind and wave loading, and combination of wind and wave loading

Other aspects

- Determination of pile embedment depth
- Determination of sequence of operations on site
- Design of grouted joint or other types of connection, including 3D finite element analyses
- Preparation of corrosion protection specification
- Determination of scour protection requirements
- Design of appurtenances, including J-tubes and boat landings
- Design of substation platform, including selection of construction
- Preparation of fabrication details and specifications
- Preparation of design reports

Value engineering

- Optimisation of design performed to find overall most economic solution and give minimal operations and risks on site
- Fine tuning of design to achieve optimum modal characteristics and the highest fatigue category details at the critical points

Decommissioning studies

- Studies into the anticipated methodology and attendant costs likely to be associated with the decommissioning of a proposed wind farm
 - Gravity foundations
 - Monopile foundations
 - Tri-pod or quad-pod foundations
 - Scour protection and fouling
 - Sub-sea cabling and grid connection point
 - Ultimate disposal of components and materials
- Identify how decommissioning process can be simplified at detailed design stage
- Estimates of the likely costs of decommissioning to be incorporated into financial modelling of the whole project

Further information

- For more in-depth information on my general capabilities in detailed design and a list of my technical abilities, please refer to separate attachment "Technical Abilities".
- For more information on more specialist areas of expertise and state-of-theart methods of analysis and design, please refer to separate attachment "Additional Technical Services".